MCRS Statistical tests

Övningen är skapad 2021-12-12 av AxelGernandt. Antal frågor: 41.




Välj frågor (41)

Vanligtvis används alla ord som finns i en övning när du förhör dig eller spelar spel. Här kan du välja om du enbart vill öva på ett urval av orden. Denna inställning påverkar både förhöret, spelen, och utskrifterna.

Alla Inga

  • Level of measurement one-sample t-test Test value is hypothetical mean. Test variable is continuous
  • What it does: One sample T-test Compares sample mean to hypothetical population mean
  • Why one-sample t-test Make sure the sample mean is a good fit for hypothetical population
  • Assumption one sample t-test Normal distribution
  • Run One-sample t-test SPSS Analyze > Compare means > One-sample t-test (Assign test variable, insert hypothetical mean in test value)
  • Measure of strength one-sample t-test/Paired/Independent Cohen's d
  • Level of measurement paired samples T Test variable 1 & 2 Continuous
  • What paired sample T does Compares the means of two scales belonging to same respondent to check if population means are significantly different
  • Why paired sample T Compare mean differences within groups in the pop
  • Assumption paired sample T Normal distribution, N>100
  • Paired samples SPSS Assign variables 1 & 2 antichronologically
  • Level of measurement independent ST Grouping X categorical, Test Y continuous
  • What independent S-T does Compare means of two groups determined by a grouping variable to see if the population means are significantly different
  • Why independent S-T Make sure that there is a significant difference between the means of two groups in the population
  • Independent ST Assumption Normal distribution, N>100, Variances in both groups are roughly equal
  • Levene's test significant (<.05) Check second row (equal variances not assumed)
  • Levene's test not significant Equal variances assumed - check first row
  • Independent S-T SPSS Assign test variable(DV) Assign grouping variable(IV)
  • OWA Level of measurement Grouping variables (2IV) Categorical. Dependent continuous
  • TWA/OWA/Regression Relationship direction Assymetrical
  • What OWA does Compares means of more than two groups, F-test sees if there's variance between at least 2 groups. Posthoc looks at differences between groups
  • Why OWA? Compare means of two or more groups while testing effects
  • Assumptions TWA/OWA Normal distribution, Variances in both groups roughly equal (Homogeniety of variances)
  • Observation OWA Only (X) can test model (F-test) and compare means across more than two groups
  • Effect size OWA/TWA EtaSquared
  • TWA Levels of measurement Grouping variables 1 & 2 categorical, Dependent is continuous
  • Why TWA? Adds a categorical moderator for OWA
  • Chi-square level of measurements Nominal/nominal, Nominal/Ordinal, Ordinal
  • Chi: Symmetric/Nominal Cramer's V (Phi for 2x2 tables)
  • Chi: Asymmetric/Nominal Goodman & Kruskals tau
  • Chi: Symmetric/Ordinal Gamma
  • Chi: Asymmetric/Ordinal Somer's D
  • What Chi does Checks if there's any association between two variables
  • Why Chi? We have 2 categorical variables
  • Chi Assumptions Expected counts of at least 1, Max 20% with expected counts >5, Each item contributes to only one cell (mutually exclusive)
  • Regression level of measurement Interval or ratio
  • Measure of effect Regression Pearson's r
  • What regression does Predicts the value of a variable based on the values of other variables
  • Why regression Check if IV can predict a single DV, and to check whether each of these IV's are significant predictors of the DV or not
  • Assumption regression Linearity
  • Observation regression Slope, R2 as percentage

Alla Inga

(
Utdelad övning

https://glosor.eu/ovning/mcrs-statistical-tests.10765045.html

)